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Abstract. Given a periodically time dependent Hamiltonian H(t) and ψ(t)

the solution at time t of the Schrödinger equation (−i∂t + H(t))ψ(t) = 0, we

shortly review what is known on the time behaviour of Eψ(0)(t) := (H(t)ψ(t), ψ(t))

as t tends to infinity. We give sufficient conditions to insure that Eψ(0) remains

bounded in the course of time, a phenomenon that we call dynamical localization

of the quantum trajectory, {ψ(t), t ∈ IR}. We also deduce bound, uniform in time,

on transition probabilities for such systems.

1 Introduction

1.1 What we are aiming for

Let IR 3 t 7→ H(t) be time dependent quantum Hamiltonian acting on a
separable Hilbert space H which is T -periodic, T > 0. Assume that H(t) is
selfadjoint for all t and that the Schrödinger equation

−i∂tψ(t) +H(t)ψ(t) = 0, with initial condition ψ(0) ∈ H (1)

has a unique solution IR 3 t 7→ ψ(t) ∈ domH(t), i.e. ψ(t) belongs to the
domain of H(t). Let

Eψ(0)(t) := (H(t)ψ(t), ψ(t)).

The question we want to address in this article is what are sufficient condi-
tions on H(t) and ψ(0) so that

sup
t∈IR

∣∣∣Eψ(0)(t)
∣∣∣ <∞? (2)
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This question may be rephrased in physical terms as whether the quantum
system described by H(t) cannot pump energy indefinitely from outside? In-
deed since the Hamiltonian plays the role of the energy observable in quan-
tum mechanics, Eψ(0)(t) is nothing but the energy of the system in the
quantum state ψ(t). If H(t) would be time independent, then t 7→ Eψ(0)(t)
is obviously constant. Time dependent Hamiltonian are designed to model
the action of an external force on the quantum system under study and (2)
is the question whether this force leaves the energy of the system bounded
in the course of time .

We shall consider only quantum systems which have a purely punctual
Floquet operator U(T, 0) : H 7→ H, where U(t, s) denotes the propagator
associated to H(t), i.e. the operator which transforms ψ(s) into ψ(t).

Another restriction we make in these notes is

V (t) := H(t)−H(0) is strongly C1(IR,B(H)) (3)

so that (2) will be true if and only if (H(0)ψ(t), ψ(t)) remains bounded. Let
P (∆) denote the spectral projector of H(0) associated to the real interval ∆
and assume that ψ(0) ∈ RanP (∆). Such a property (2) for H(0) requires
that

lim
dist (∆′,∆)→∞

sup
t∈IR
‖P (∆′)U(t, 0)P (∆)‖2 = 0 (4)

i.e. the transition probability ‖P (∆′)U(t, 0)P (∆)‖2 to jump in time t from
a given spectral subspace of H(0) to a high energy one, RanP (∆′), must
vanish uniformly in time as inf ∆′ →∞. We shall also consider this question
below.

In view of the RAGE theorem for periodically driven systems, see [EV]
and §1.2 below, it is natural to demand that U(T, 0) is purely punctual in
order to get (2) and (4). However if this guarantees the relative compactness
of the quantum trajectories, {ψ(t), t > 0}, it does not seem sufficient to get
(2). Even, one knows for stationary pure point Schrödinger Hamiltonians
in L2(ZZd) or L2(IRd), d ≥ 1, that t 7→ (X2ψ(t), ψ(t)) has no ballistic
behaviour, see [Si],

lim sup
t→∞

(X2ψ(t), ψ(t))
1

t2
= 0

but it is shown in [RiJLSi] that a subballistic behaviour may happen

lim sup
t→∞

(X2ψ(t), ψ(t))
log t

t2
= +∞.

In this context one says that there is dynamical localization if

sup
t∈IR

(X2ψ(t)ψ(t)) <∞.
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By analogy we shall say that there is dynamical localization of the trajec-
tory with initial condition ψ(0) in the periodically driven quantum system
described by H(t) if (2) is verified.

1.2 What is known so far

It is classical, see e.g. [Yo] that under (3) the Schrödinger equation (1)
possesses a unique solution which is strongly differentiable, for each initial
condition in domH(t) = domH(0). Under this assumptions (3) it is obvious
(since ∂tEψ(0)(t) = (V ′(t)ψ(t), ψ(t))) to get

∣∣∣Eψ(0)(t)
∣∣∣ ≤ ∫ t

0
‖V ′(s)‖‖ψ(0)‖2ds ≤ sup

t∈[0,T ]
‖V ′(t)‖‖ψ(0)‖2 t

i.e. the energy can at most grow linearly in time. A weaker growth can be
proven for system having increasing spectral gaps. The first result of that
type is due to A. Joye [J]. A more general result due to G. Nenciu [N] is as
follows:

Theorem N. LetH := H0+V (t) withH0 ≥ 0, selfadjoint, V symmetric and
V ∈ Cm(IR,B(H)) in norm; V is not assumed to be periodic but uniformly
bounded. Suppose that the spectrum of H0 has the following structure: ∃
0 < c ≤ C <∞, α > 0, d <∞

spect (H0) =
⋃
1≤j

spj , c jα ≤ dist (spj , spj+1) ≤ Cjα, diam (spj) ≤ d jα.

If m ≥
[

1+α
2α

]
then: lim sup

t→∞

Eψ(0)(t)

t
1+α
mα

<∞, ∀ψ(0) ∈ domH0.

If in addition V is periodic, small enough with appropriate frequencies one
can get uniform boundedness of the energy. The following theorem is proven
in [ADE]:

Theorem ADE. Let H = H0 + gV (t) with H0 selfadjoint g > 0, V in
C∞(IR,B(H)), symmetric and 2π/ω- periodic. Assume that ω ∈ Ω where Ω
is a compact interval which does not contain the origin. Assume also that
H0 has discrete simple spectrum {En}n∈IN which verifies:

∃α > 0, inf
n∈IN

En+1 − En
nα

> 0.

Then there exists g0 > 0 so that for all 0 < g ≤ g0, one can find Ω̃ ⊂ Ω such
that:
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(i) ∃C > 0, |Ω \ Ω̃| ≤ C√g,

(ii) ∀ω ∈ Ω̃,∀ψ(0) ∈ domH0, suptEψ(0)(t) <∞.

We end up this short review of results about the question (2) by mention-
ing the article [DeBF] where an interesting panorama around this question
is proposed.

Concerning the question (4) about smallness of transitions probabilities
uniform in time, there is the following byproduct of the RAGE theory for
periodically driven systems, see [EV]:

Theorem EV. If U(T, 0) is pure point, then every quantum trajectory has
a compact closure and for any family of bounded operators {Ps}s∈IR+ which
converges strongly to the zero as s→∞ one has

lim
s→∞

sup
t>0
‖PsU(t, 0)ψ(0)‖ = 0.

The aim of this article is to extend theorems ADE and EV.

2 Floquet decomposition revisited

2.1 Floquet operator and Floquet Hamiltonian

Assume we are given on a separable Hilbert space H a strongly continuous
and unitary propagator IR× IR 3 (t, s) 7→ U(t, s) which is T -periodic, i.e.:

∃T > 0, ∀t, s ∈ IR, U(t+ T, s+ T ) = U(t, s). (5)

Let

K := L2(ω−1S1,H) ∼ L2(ω−1S1)⊗H, ω :=
2π

T

be the so-called extended Hilbert space of T -periodic and L2-function with
values in H. In this article S1 denotes the circle of radius 1. We shall follow
the Howland-Yajima construction [H1, Ya].

The following mapping induces a one parameter (σ) unitary group on K
which is strongly continuous:

∀σ ∈ IR, (Vσf)(t) := U(t, t− σ)f(t− σ). (6)

By Stone’s theorem we get a selfadjoint operator K in K so that Vσ =
exp(−iσK) with the following characterization of its domain

domK 3 f ⇐⇒ i∂σVσf |σ=0 ∈ K.
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It is straightforward to verify that

e−iTK =W 1⊗ U(T, 0)W−1, with W :=

∫ ⊕
ω−1S1

U(t, T )dt (7)

i.e. exp(−iTK) and 1⊗ U(T, 0) are unitarily equivalent.
If in addition we know that U is generated by a selfadjoint family of

periodic Hamiltonians {H(t)} satisfying (3) then K is the closure of

D ⊗ 1 +

∫ ⊕
ω−1S1

H(t)dt, with domain H1(ω−1S1)⊗ domH(0)

where D := −i∂t with domain H1(ω−1S1) ( the first Sobolev space). K and
U(T, 0) are called respectively Floquet Hamiltonian and Floquet operator.

2.2 Floquet decomposition

Let Mω : K 7→ K denote the multiplication operator by exp(iωt). Thanks
to (5) one gets

MωdomK = domK and MωKM
−1
ω = K − ω. (8)

Assume now that
K is purely punctual (9)

i.e. K possesses a basis of eigenvectors of K. We shall denote by f these
eigenvectors and Ff the corresponding eigenvalue: Kf = Fff . Thanks to
(8), by Hausdorff’s maximality principle there exists an orthonormal eigen-
basis F of K which is Mω invariant. This allows to define an equivalence
relation on F

f ∼ g ⇐⇒ ∃n ∈ ZZ, f = Mn
ωg.

We call F0 a subset of F made of exactly one element in each equivalence
class.

Each eigenvector Kf = Fff defines a strongly continuous function
ω−1S1 3 t 7→ f(t) ∈ H since

∃t0 ∈ ω−1S, f(t) = ei(t−t0)FfU(t, t0)f(t0) (10)

which follows from an application of Fubini’s theorem to (6) and since U is
strongly continuous. Thus we may set

∀t ∈ ω−1S1, F0(t) := {f(t) ∈ H, f ∈ F0}.
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It is straightforward to show that

∀t ∈ ω−1S1,
√
TF0(t) is an orthonormal basis of H.

We define now two operators

UA(t, s)f(s) := f(t), HAf(0) := Fff(0), ∀f ∈ F0

and get by rewriting (10) the well known Floquet decomposition of the
propagator U :

∀t, s ∈ ω−1S1 U(t, s) = UA(t, 0)e−i(t−s)HAUA(0, s). (11)

Notice that UA is unitary and HA is selfadjoint. In the sequel U and UA
will also denote their extension to IR× IR by periodicity.

3 A criterion for dynamical localization

We start by an easy to get criterion:

theorem 1. Assume (3) and that V is T -periodic and let U denote the
propagator which solves (1). If U(T, 0) is purely punctual and possesses an
eigenbasis B which is contained in domH(0) then for all linear and finite
combination ψ of elements of B:

sup
t∈IR
|Eψ(t)| <∞.

Proof. Let U(T, 0)ϕi = λiϕi, i = 1, 2 then ϕi ∈ domH(0) by assumption
so that as we recalled above, t 7→ ϕi(t) := U(t, 0)ϕi is strongly C1 and
therefore Eϕ1,ϕ2(t) := (H(t)ϕ1(t), ϕ2(t)) = i(ϕ′1(t), ϕ2(t)) is continuous with
respect to t. Next since H and U are T -periodic (see (5)) the same is true
for t 7→ |Eϕ1,ϕ2(t)|. Indeed

|Eϕ1,ϕ2(t+ T )| = |(H(t+ T )U(t+ T, T )U(T, 0)ϕ1, U(t+ T, T )U(T, 0)ϕ2)|
= |λ1λ2(H(t)U(t, 0)ϕ1, U(t, 0)ϕ2)| = |Eϕ1,ϕ2(t)|

since |λ1λ2| = 1. We may conclude that Eϕ1,ϕ2 is uniformly bounded on IR.
Finally let ψ :=

∑N
i=1 ciϕi, with ϕi ∈ B and normalized, and ci ∈ C, for all

i, an easy estimation gives

|Eψ(t)| ≤ sup
1≤i,j≤N

|Eϕi,ϕj (t)|N‖ψ‖2
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which shows the desired statement.

Remarks. (a) The above result extends obviously to the case where U is
purely punctual only on a subspace of H.

(b) In the conditions of the above theorem there is a dense set of initial
conditions with a dynamically localized trajectory. However we do not know
if this is true for all initial conditions in domH(0). This is the question we
shall consider in the remainder of this section.

(c) It can be shown that U(T, 0) possesses an eigenbasis in domH(0) iff the
Floquet Hamiltonian K has an eigenbasis F such that ∀f ∈ F , t 7→ f(t) ∈ H
is strongly C1 . This motivates our assumption (DL1) below.

Assumption DL.

For all f ∈ F0, f : ω−1S1 7→ H is strongly differentiable. (DL1)

If we define S : K 7→ K by

∀f ∈ F0, ∀t ∈ ω−1S1, S(t)f(t) := −if ′(t)

then
S ∈ B(K). (DL2)

Remarks. (a) Assume (3), then t 7→ U(t, 0)g is strongly differentiable for
all g ∈ domH(0). It follows with the help of (10) that every eigenvector f
of K is weakly differentiable i.e.

∀g ∈ domH(0), t 7→ (f(t), g) = eitFf (f(0), U(t, 0)?g)

is differentiable. However it is not clear at all that f is strongly differentiable.
Thus (DL1) seems to be an extra quality imposed on the system; notice
that it is equivalent to f(0) ∈ domH(0) for all eigenvector f of K as we
announced in the above remark.

(b) It is a simple exercise to verify that t 7→ S(t) is strongly continuous.

(c) Notice that (DL2) is equivalent to supt ‖S(t)‖ <∞.

(d) S is selfadjoint and −S is the generator of UA. Indeed for all eigenvectors
f of K

−i∂tUA(t, 0)f(0) = −if ′(t) = S(t)f(t).

Also:
S(t) = −i(∂tUA(t, 0))UA(t, 0)?. (12)
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Let
UA(t) := UA(t, 0) and U(t) := U(t, 0).

With this S operator we may rewrite the eigenvalue equation Kf = Fff as
(S(t) +H(t))f(t) = UA(t)HAUA(t)−1f(t) so that by density one gets

S +H = UAHAU
−1
A = UHAU

−1 on domK;

the last equality follows from (11). In particular

S(0) +H(0) = HA and HU = −SU + UHA

so that for all ψ ∈ domH(0):

‖HUψ‖ = ‖(−SU + U(H(0) + S(0)))ψ‖ ≤ 2‖S‖‖ψ‖+ ‖H(0)ψ‖. (13)

One also has
(S + V )U − US(0) = [U,H(0)]. (14)

Let now P (∆) and P (∆′) be two spectral projectors of H(0).

Theorem 2. Assume (3) and (DL) then

∀ψ ∈ domH(0), sup
t∈IR
|Eψ(t)| <∞

and
sup
t∈IR
‖P (∆)U(t, 0)P (∆′)‖ ≤ π

2dist (∆,∆′)
(2‖S‖+ ‖V ‖)

Proof. One has |Eψ(t)| = |(H(t)U(t)ψ,U(t)ψ)| ≤ 2‖S‖‖ψ‖2 + ‖H(0)ψ‖‖ψ‖
using (13). To prove the second statement we remark that

H(0)P (∆)P (∆)UP (∆′)− P (∆)UP (∆′)P (∆′)H(0) = P (∆)[H(0), U ]P (∆′)

which is of the form AX −XB = Y . Such an equation in the unknown X
may be solved, see [BhaRos], and

‖P (∆)UP (∆′)‖ ≤ π

2

1

dist (∆,∆′)
‖[H(0), P (∆)UP (∆′)]‖

≤ π

2

1

dist (∆,∆′)
‖[H(0), U ]‖.

The rest follows from (14).

The second statement of the above theorem improves the result of the
EV theorem, at least for the particular family {Ps}s made of the spectral
projections of H(0).
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4 Sufficient conditions for KAM systems

Let K0 := D ⊗ 1 + 1 ⊗ H(0) acting in K. An orthonormal eigenbasis of
D : L2(ω−1S1) 7→ L2(ω−1S1) is

{χm1 , m1 ∈ ZZ}, with χm1(t) =
1√
T
eim1ωt.

We start by proving the

lemma 3. Assume: (i) there exists a unitary operator U and a bounded
selfadjoint operator G such that K0 + V = U(K0 + G)U?, with [D,G] =
[H0, G] = 0 and [U , eit] = 0.

(ii) K0 +G is pure point.

Then

(a)K0+G has an orthonormal eigenbasis of the form {χm1⊗ϕm2}(m1,m2)∈ZZ×IN
where {ϕm2}m2∈IN is an orthonormal eigenbasis of H(0).

(b) If F0 is chosen as {f0,m2 := Uχ0 ⊗ ϕm2}m2 it follows that

∀t, S(t) = −i(∂tU(t))U?(t). (15)

Proof. (a) Since [D,G] = 0 this means that G does not depend on time.
Thus K0 +G = D ⊗ 1 + 1⊗ (H0 +G). This shows (a).

(b) We shall use the formula (12), and prove that with the above choice of
F0 one has UA(t) = U(t)U?(0); then clearly S(t) = −i(∂tU(t))U?(t) follows.

So it remains to verify that UA(t) = U(t)U?(0). We recall that UA(t)
is defined by: UA(t)f0,m2(0) = f0,m2(t). By definition of f0,m2 and since
[U , eit] = 0 one has

∀t, U(t)
1√
T
ϕm2 = f0,m2(t)

so that in particular: U(0) 1√
T
ϕm2 = f0,m2(0). Our statement follows at

once.

Because of (15), we see that in order to apply the criterion of §3 it is
sufficient to show that ∂tU is bounded. Since U is a multiplication in time
it is well known that

‖U(t)‖ ≤ sup
t
‖U(t)‖ = ‖U‖ ≤

∑
k∈ZZ

‖Uk,0‖
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where
Um1,n1 := P (1)

m1
UP (1)

n1
with P (1)

m1
:= (·, χm1)χm1 .

Assume now that H(0) is discrete with the following spectral decomposition

H(0) =
∑

m2∈IN
Em2P

(2)
m2

where Em2 and P
(2)
m2 denote the eigenvalues and the associated eigenprojec-

tors resp.. Notice that

Mm2 := dimPm2 <∞

since H(0) is discrete. We can further estimate the norm of bounded oper-
ators on H by the Schur-Holmgrem norm associated to the decomposition

of H by the family {P (2)
n2 }:

‖U‖ ≤ sup
m2

∑
k∈ZZ

∑
n2∈IN

‖Uk,m2,n2‖ Uk,m2,n2 := P (2)
m2
Uk,0P (2)

n2

which is just the type of norm used in [DLSV] where the proof of following
theorem may be found. To state this theorem we define the norm on B(K)

‖X‖r := sup
m2

∑
k∈ZZ

∑
n2∈IN

‖P (2)
m2
Uk,0P (2)

n2
‖max{|k|r, 1}, r ≥ 0.

Theorem DLSV. Let ω0 > 0, Ω0 := [8
9ω0,

9
8ω0]; assume

∃σ > 0,
1

(∆Eσ)σ
:=

∑
m2 6=n2

Mm2Mn2

|Em2 − En2 |σ
<∞. (16)

and let ∆0 := minm2 6=n2 |Em2 − En2 |.
Then, ∀r > σ + 1

2 , ∃C1 > 0 and C2(σ, r) > 0, such that

‖V ‖r < min

{
4∆0

C1
,
ω0

C1
,
ω0

C2

(
∆Eσ
ω0

)σ}
(17)

implies

∃Ω∞ ⊂ Ω0, with
|Ω∞|
|Ω0|

≥ 1− ‖V ‖r
ω0
C2

(
∆Eσ
ω0

)σ
so that K is pure point for all ω ∈ Ω∞. |Ω?| denotes the Lebesgue measure
of Ω?. More precisely there exists a unitary operator U so that K = U(K0 +
G)U?

sup
m∈IN

∑
k∈ZZ

∑
n∈IN
|Uk,m,n|max{|k|r−σ−

1
2 , 1} <∞

10



where G is a bounded selfadjoint operator which commutes with D and
H(0).

We may state now the

Theorem 4. Assume that H(0) is discrete and simple and fulfills the grow-
ing gap condition (16). Assume also that V (t) := H(t)−H(0) is symmetric
and strongly Cr as a function of t with r > σ+ 3

2 and verifies (17). Assume
finally that the frequency ω of V is in the set Ω∞ of the above theorem.
Then the conclusions of theorem 2 are valid.

5 Two examples

We start by the quantum Fermi accelerator i.e. a free quantum particle in
one dimensional pulsating box (0, a(t)) with period Ta > 0. The Floquet
Hamiltonian of such a system may be cast into the form ( see e.g. [Se, DS2]
for details)

K := −i∂t +H(t), H(t) := −∂2
x + V (h(t), x), V (t, x) :=

1

4
äa3x2

acting in K := L2(0, T )⊗L2(0, 1) where h denotes the inverse function of f :
t 7→

∫ t
0 a
−2(s)ds and T := f(Ta). Assume now that a is in Cr(IR, IR+ \ {0})

with r > 9/2, it follows that V is in Cr−2(IR,B(L2(0, 1)) in norm and the
norm ‖V ‖r−2 is finite. Also if äa3 is small enough, H(0) is discrete, simple
and (16) is true with any σ > 1. Thus we may apply theorem 4 since
r − 2 > σ + 3/2 for an appropriate σ.

The second example concerns the pulsed N -dimensional quantum top.
Let H(t) = −∆LB + V (t, x) where ∆LB denotes the Laplace-Beltrami op-
erator on SN , the N -dimensional unit sphere, and (t, x) 7→ V (t, x) is C4 in
x ∈ SN and Cr in t with r > 2N + 3

2 , see [DLSV] for more details. Again
theorem 4 applies here for V small enough and ad hoc frequencies.

6 Concluding remarks

Given an arbitrary r > 0 we can show that the supt∈IR+
|(H(t)rψ(t), ψ(t))|

is finite by requiring enough regularity of the eigenvectors of the Floquet
Hamiltonian with respect to the time variable. Also one could get estimates
on transition probabilities of the type ‖P (∆)U(t, 0)P (∆′)‖ ≤ Crdist (∆,∆′)−r

where Cr is a constant which does not depend on ∆ and ∆′. It would be
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useful for applications to treat the case of unbounded perturbations V (t).
We shall consider these extensions in a further publication.

As can be seen by a close look at the proof of theorem DLSV which
is the key for theorem 4, the allowed frequencies are non resonant in the
sense that all eigenvalues of K0 = D + H(0), namely K0,m := ωm1 + Em2 ,
m := (m1,m2) ∈ ZZ × IN , are such that K0,m = K0,n iff m = n. What
happen concerning this dynamical localization property for a pure point
Floquet Hamiltonian, K = K0 + V , with a resonant K0, is still an open
question. In particular whether one can find a pure point K with quantum
trajectory which are not dynamically localized like in the example of [RiJLSi]
is a challenge.
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